The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
本文探讨了管状结构提取任务的点集表示。与传统的掩码表示相比,点集表示享有其灵活性和表示能力,这不会受到固定网格作为掩模的限制。受此启发,我们提出了PointCatter,这是管状结构提取任务的分割模型的替代方法。PointCatter将图像分为散射区域,并对每个散点区域预测点。我们进一步提出了基于贪婪的区域的两分匹配算法,以端到端训练网络。我们在四个公共管状数据集上基准测试了点刻表,并且有关管状结构分割和中心线提取任务的广泛实验证明了我们方法的有效性。代码可在https://github.com/zhangzhao2022/pointscatter上找到。
translated by 谷歌翻译
人类的姿势估计旨在弄清不同场景中所有人的关键。尽管结果有希望,但目前的方法仍然面临一些挑战。现有的自上而下的方法单独处理一个人,而没有不同的人与所在的场景之间的相互作用。因此,当发生严重闭塞时,人类检测的表现会降低。另一方面,现有的自下而上方法同时考虑所有人,并捕获整个图像的全局知识。但是,由于尺度变化,它们的准确性不如自上而下的方法。为了解决这些问题,我们通过整合自上而下和自下而上的管道来探索不同接受场的视觉线索并实现其互补性,提出了一种新颖的双皮线整合变压器(DPIT)。具体而言,DPIT由两个分支组成,自下而上的分支介绍了整个图像以捕获全局视觉信息,而自上而下的分支则从单人类边界框中提取本地视觉的特征表示。然后,从自下而上和自上而下的分支中提取的特征表示形式被馈入变压器编码器,以交互融合全局和本地知识。此外,我们定义了关键点查询,以探索全景和单人类姿势视觉线索,以实现两个管道的相互互补性。据我们所知,这是将自下而上和自上而下管道与变压器与人类姿势估计的变压器相结合的最早作品之一。关于可可和MPII数据集的广泛实验表明,我们的DPIT与最先进的方法相当。
translated by 谷歌翻译
移动服务机器人变得越来越无处不在。但是,这些机器人可能对视觉障碍者(PVI)提出潜在的可访问性问题和安全问题。我们试图探索PVI在主流移动服务机器人方面面临的挑战,并确定其需求。对他们在三个新兴机器人的经历进行了采访,接受了17个PVI:真空机器人,送货机器人和无人机。我们通过考虑其围绕机器人的不同角色(直接用户和旁观者)来全面研究PVI的机器人体验。我们的研究强调了参与者对移动服务机器人访问性,安全性和隐私问题的挑战和担忧。我们发现缺乏可访问的反馈使PVI难以精确控制,定位和跟踪机器人的状态。此外,遇到移动机器人时,旁观者感到困惑,甚至吓到参与者,并呈现安全性和隐私障碍。我们进一步提炼设计注意事项,以提供PVI的更容易访问和安全的机器人。
translated by 谷歌翻译
模型量化已成为加速深度学习推理的不可或缺的技术。虽然研究人员继续推动量化算法的前沿,但是现有量化工作通常是不可否认的和不可推销的。这是因为研究人员不选择一致的训练管道并忽略硬件部署的要求。在这项工作中,我们提出了模型量化基准(MQBench),首次尝试评估,分析和基准模型量化算法的再现性和部署性。我们为实际部署选择多个不同的平台,包括CPU,GPU,ASIC,DSP,并在统一培训管道下评估广泛的最新量化算法。 MQBENCK就像一个连接算法和硬件的桥梁。我们进行全面的分析,并找到相当大的直观或反向直观的见解。通过对齐训练设置,我们发现现有的算法在传统的学术轨道上具有大致相同的性能。虽然用于硬件可部署量化,但有一个巨大的精度差距,仍然不稳定。令人惊讶的是,没有现有的算法在MQBench中赢得每一项挑战,我们希望这项工作能够激发未来的研究方向。
translated by 谷歌翻译
Video semantic segmentation (VSS) is beneficial for dealing with dynamic scenes due to the continuous property of the real-world environment. On the one hand, some methods alleviate the predicted inconsistent problem between continuous frames. On the other hand, other methods employ the previous frame as the prior information to assist in segmenting the current frame. Although the previous methods achieve superior performances on the independent and identically distributed (i.i.d) data, they can not generalize well on other unseen domains. Thus, we explore a new task, the video generalizable semantic segmentation (VGSS) task that considers both continuous frames and domain generalization. In this paper, we propose a class-wise non-salient region generalized (CNSG) framework for the VGSS task. Concretely, we first define the class-wise non-salient feature, which describes features of the class-wise non-salient region that carry more generalizable information. Then, we propose a class-wise non-salient feature reasoning strategy to select and enhance the most generalized channels adaptively. Finally, we propose an inter-frame non-salient centroid alignment loss to alleviate the predicted inconsistent problem in the VGSS task. We also extend our video-based framework to the image-based generalizable semantic segmentation (IGSS) task. Experiments demonstrate that our CNSG framework yields significant improvement in the VGSS and IGSS tasks.
translated by 谷歌翻译
The development of deep learning models in medical image analysis is majorly limited by the lack of large-sized and well-annotated datasets. Unsupervised learning does not require labels and is more suitable for solving medical image analysis problems. However, most of the current unsupervised learning methods need to be applied to large datasets. To make unsupervised learning applicable to small datasets, we proposed Swin MAE, which is a masked autoencoder with Swin Transformer as its backbone. Even on a dataset of only a few thousand medical images and without using any pre-trained models, Swin MAE is still able to learn useful semantic features purely from images. It can equal or even slightly outperform the supervised model obtained by Swin Transformer trained on ImageNet in terms of the transfer learning results of downstream tasks. The code will be publicly available soon.
translated by 谷歌翻译
The recent trend in multiple object tracking (MOT) is jointly solving detection and tracking, where object detection and appearance feature (or motion) are learned simultaneously. Despite competitive performance, in crowded scenes, joint detection and tracking usually fail to find accurate object associations due to missed or false detections. In this paper, we jointly model counting, detection and re-identification in an end-to-end framework, named CountingMOT, tailored for crowded scenes. By imposing mutual object-count constraints between detection and counting, the CountingMOT tries to find a balance between object detection and crowd density map estimation, which can help it to recover missed detections or reject false detections. Our approach is an attempt to bridge the gap of object detection, counting, and re-Identification. This is in contrast to prior MOT methods that either ignore the crowd density and thus are prone to failure in crowded scenes, or depend on local correlations to build a graphical relationship for matching targets. The proposed MOT tracker can perform online and real-time tracking, and achieves the state-of-the-art results on public benchmarks MOT16 (MOTA of 77.6), MOT17 (MOTA of 78.0%) and MOT20 (MOTA of 70.2%).
translated by 谷歌翻译
Homography estimation is erroneous in the case of large-baseline due to the low image overlay and limited receptive field. To address it, we propose a progressive estimation strategy by converting large-baseline homography into multiple intermediate ones, cumulatively multiplying these intermediate items can reconstruct the initial homography. Meanwhile, a semi-supervised homography identity loss, which consists of two components: a supervised objective and an unsupervised objective, is introduced. The first supervised loss is acting to optimize intermediate homographies, while the second unsupervised one helps to estimate a large-baseline homography without photometric losses. To validate our method, we propose a large-scale dataset that covers regular and challenging scenes. Experiments show that our method achieves state-of-the-art performance in large-baseline scenes while keeping competitive performance in small-baseline scenes. Code and dataset are available at https://github.com/megvii-research/LBHomo.
translated by 谷歌翻译
Graph neural networks have achieved significant success in representation learning. However, the performance gains come at a cost; acquiring comprehensive labeled data for training can be prohibitively expensive. Active learning mitigates this issue by searching the unexplored data space and prioritizing the selection of data to maximize model's performance gain. In this paper, we propose a novel method SMARTQUERY, a framework to learn a graph neural network with very few labeled nodes using a hybrid uncertainty reduction function. This is achieved using two key steps: (a) design a multi-stage active graph learning framework by exploiting diverse explicit graph information and (b) introduce label propagation to efficiently exploit known labels to assess the implicit embedding information. Using a comprehensive set of experiments on three network datasets, we demonstrate the competitive performance of our method against state-of-the-arts on very few labeled data (up to 5 labeled nodes per class).
translated by 谷歌翻译